Full data sample - the future

All-Arm 600+800MeV all

Outlook to the future

Note: early in the story of Imvm ee physics at RHIC

- Near term: this data
 - Use rest of statistics
 - Better control of systematics
 - Centrality dependence (dAu-KK, ee?)
 - omega
- run 4
 - \$\phi\$ flow (poster Flow 7: Debsankar Mukhopadhyay)
 - ee in Au-Au 50x run-2
- The far future
 - Upgrades- the Hadron Blind Detector (Cerenkov)
 - RHIC II

Conclusion

```
dAu \phi \rightarrow e^+e^-

dN/dy=.056±.015(stat) ±50%(syst)

T=326 ±94(stat) ±53%(syst) MeV

dAu \phi \rightarrow K+K-

dN/dy = 0.0468 +/- 0.0092(stat) (+0.0095,-0.0092) (syst.)

T (MeV) = 414 +/- 31 (stat) +/- 23 (syst)
```

Summary:

- A first measurement has been made of the ϕ to ee channel in dAu collisions at 200 GeV. Within error bars it agrees with the KK result.
- For overall shapes in Au-Au ϕ to KK, mass and width stay consistent with PDG as a function of centrality

Add kaons

AuAu K – published (<u>nucl-ex/0307022</u>) Au-Au phi to KK– PHENIX FINAL dAu – PHENIX prelim

dN/dy rises than seems to saturate as do the kaons

dN/dy per N_{part} (N_{part}~9)

dN/dy rises than seems to saturate

 N_{part}

N_{part} dependence of T

T indep of centrality

AuAu $\phi \rightarrow K^+K^-$

Yields and slopes:

Centrality dependence

Min bias $dN/dy=1.34\pm0.09(stat)\pm0.20(syst)$ T=366 $\pm11(stat)\pm18(syst)$ MeV

more standard fare: Yields and slopes in dAu and AuAu

 $\phi \rightarrow KK$ Au-Au 200 GeV Dependence of mass and width on centrality

PDG M=1.01946 GeV/ c^2 Γ = 4.26 MeV/ c^2

- Mass consistent with PDG
 - independent of centrality-
- Width consistent with PDG
 - Independent of centrality
- Note: \$\operature \text{KK decaying in fireball scattered out of peak

Au-Au o to KK

- study the mass and width as a function of centrality
 - Fit to Relativistic Breit Wigner convoluted with a Gaussian experimental resolution
 - σ =1.2 MeV from MC

Poster: Strange 14

Charles Maguire

Au-Au collisions: ϕ to KK mass and width dependence on centrality

Compare ee with KK results

- Yields consistent
 - BR in normal ratio

PHENIX preliminary

Minimum-bias m_T distribution of ϕ

φ→KK min bias

dN/dy = 0.0468 +/- 0.0092(stat)(+0.0095,-0.0092) (syst.)

T (MeV) = 414 +/- 31 (stat) +/- 23 (syst)

(PHENIX preliminary)

Overall fit dN/dy~ .0485 T~408 χ^2 /DOF=6.7/7

200 GeV dAu - K+K- invariant mass

- PID in TOF only (smaller acceptance) Yield
 - Higher pt
- Nevt = 62 M
- Min. bias
- Fit to Relativistic BW convoluted with a Gaussian
 - N = 207 ± 16
 - $S/B \sim 5/1$
 - $m = 1.0193 \pm 0.0003 \, GeV/c^2$
 - Momentum scale error ~1%
 - Γ = 4.750 ± 0.67 MeV/ c^2
 - σ =1.2 MeV (fixed)
 - PDG M=1.01946 GeV/c² $\Gamma = 4.26 \text{ MeV/c}^2$

Poster: Spectra 9

Dipali Pal

dN/dm_T and yield


```
dN/dy=.056±.015(stat)

±50%(syst)

T=326 ±94(stat) ±

53%(syst) MeV

(PHENIX preliminary)
```

- major contributions to the systematic error
 - normalization of the background and signal extraction and the way the variations affect T and hence dN/dy
 - run-by run variation from the Electron-RICH-Trigger

ee Invariant Mass Spectra 200 GeV dAu- all m_T

- N₀~120
- Fit is to relativistic B-W convoluted with Gaussian
 - M=1.0177 ± 0.0023 GeV
 - Γ=0.00446 GeV(fixed)
 - σ_{exp} =0.0081 ± 0.0021 GeV
 - $\chi^2/DOF=13.6/13$
- Consistent with PDG

e⁺e⁻ invariant mass (GeV/c²)

- Now
 - break into $3 m_T$ bins
 - count signal by summing mass bins
 ±3\signal around mass peak

Counts per $10~{
m MeV/c^2}$

Do corrections and

Poster: Electro 4 Yuji Tsuchimoto

Conversion cuts, mixed background

PhiV (100<mass<400MeV)

- Rejecting conversions
 - PhiV=Angle plane of pair makes with plane normal to beam direction
 - Zero mass pairs→PhiV~0
 - Reject conversion pairs if
 - If M_{ee} <100
 - If 100<M_{ee}<400 and phiV<100 mrad

Data sample, electron cuts

- Analyzed 31M of EMC-RICH-Trigger triggered Events.
 - Corresponds to 1.96 minimum bias
 - 50% of total data taken during run3
 - Threshold > 600 MeV
- Electron PID cuts
 - $N_{RICHPMT} \ge 2$
 - 0.5<E/p<1.5
 - E from EMC
 - P from tracking

PHENIX- designed for such measurements

Superb (and redundant) electron PID

EMC(PBSc, PbGl)

RICH.

PID (for kaons)

Via TOF to 2GeV~

Via EMC to 1 GeV

Good momentum resolution

High rate capability

 Triggering capability on electron at Level-1

EMC-RICH-Trigger (ERT)

 Require energy in EMC+RICH firing in coincidence Need everything working in concert to get a di-electron low mass vector Meson measurement!

dAu Collisions: comparing the

$$\frac{BR(\phi \to ee)}{BR(\phi \to KK)}$$

at normal nuclear density in PHENIX @ RHIC

Let's Look at RHIC (PHENIX) Outline

- Compare BR (normal nuclear density)
 - dAu φ→ee
 - $dAu \phi \rightarrow KK$
- Mass shifts/broadening
 - Au-Au $\phi \rightarrow KK$
 - Guess: cannot see this to hadronic decays (only see stuff which decays outside fireball) - or the kaons which do decay and make it out rescatter
- Centrality dependence of \$\phi/N_{part}\$

Note: I will not talk about ϕ R_{CP} - see talk by D. Kochetkov: Friday parallel session 2

Has anyone seen such effects? ete-invariant mass spectra

- CERES Pb-Au
 - High T vacuum

- KEK E325 proton Nucleus
 - "high" baryon density

K.Ozawa et al.

Observation of ρ/ϖ Meson Modification in Nuclear Matter (Phys.Rev.Lett 86-22)

What do we look for?

- Chiral symmetry restored
 - High temperature vacuum –
 Au-Au Central
 - High baryon density
 - even normal nuclear density.
- Look for
 - Mass shifts/broadening
 - A nice trick:
 - Q value of $\phi \rightarrow KK$ is small

$$\frac{BR(\phi \to ee)}{BR(\phi \to KK)}$$

 Should be sensitive to mass changes in either φ or K

T.Hatsuda and S.Lee

QCD sum rules for vector mesons in the nuclear medium

(Phys.Rev.C46-R34-38, 1992)

Lissauer and Shuryak, Phys. Lett. B253, 15 (1991).

Experimental "Knobs"

Signal should increase with Signal should increase centrality at low pt Central-Peripheral "High" PT .compara Central-Central "Low" PT signal $\mathbf{M}_{\text{e+e}}$

Today : dAu - min bias only - but there is a "trick"
 : Au-Au - function of centrality

Looking for Chiral symmetry restoration 3 Vector Meson mass shifts in the dilepton channel

- "Light" Vector mesons (ρ, ω, ϕ) -ideal probes
 - Like putting a scale to measure mass inside the fireball
 - Short lifetime ~ few fm/c
 - → Decay inside hot fireball
- Electrons are ideal messengers
 - Don't interact strongly (e.g. solar v's)
- e.g. In Medium ρ , ω , ϕ
 - shows low mass tail -
 - With its good mass resolution PHENIX should be able to see this

R. Rapp (Nucl. Phys A661(1999) 238c

QCD and the vacuum

- The QCD Lagrangian ~ chiral symmetry (Is it true?)
 - → all masses ~0
- Doesn't match the world we know
- What do we do?
 - Assume the vacuum is not empty it full of stuff (the "condensate")
 - The interaction with the vacuum gives rise to mass
 - Condensate is Temperature dependent
 - I.e. at high T all masses ~ 0
- Crazy!? Can we test this idea?
- Heat up the vacuum in RHIC collisions
 we boil it and see if masses change
 go to zero ultimately
- Chiral phase transition
- Any connection to deconfinement??

Light vector mesons (ϕ) from dAu in PHENIX

Richard Seto
University of California, Riverside
for the PHENIX Collaboration
Quark Matter 2004
January 13, 2004

1/12/2004